Gianluca Baio
Department of Statistical Science | University College London
https://gianluca.statistica.it
https://egon.stats.ucl.ac.uk/research/statistics-health-economics
https://github.com/giabaio https://github.com/StatisticsHealthEconomics
@gianlubaio@mas.to @gianlubaio
New challenges in the estimation of the impact of policies
XLIII Jornadas de Economia de la Salud, San Cristóbal de la Laguna, Tenerife, Spain
27 June 2024
Check out our departmental podcast “Random Talks” on Soundcloud!
Follow our departmental social media accounts + magazine “Sample Space”
Examples
“… The aim is to create, here in Britain, a hostile environment… We can deport first and hear appeals later…”
Theresa May,
UK Home Secretary (May 2010 — July 2016)
UK Prime Minister (July 2016 — July 2019)
In 2017 the “Windrush scandal” hit the mainstream media headlines and cost her job to the new Home Secretary, Amber Rudd, but not to the one who actually enacted the policy…
We use data from The UK Household Longitudinal Survey (“Understanding Society”)
\[ g\left(\E[Y_{it}]\right) = g(\mu_{it}) \color{white}{= \alpha_0 + \alpha_1 w_i + \sum_{k=1}^K \beta_k X_{itk} + \phi_{0}t + \phi_{1}t w_i + \delta_0 z_{t} + \delta_1 w_i z_t + \gamma_i + \lambda_t} \,[+\ldots] \]
\[ g\left(\E[Y_{it}]\right) = g(\mu_{it}) = \alpha_0 + \alpha_1 w_i \color{white}{+ \sum_{k=1}^K \beta_k X_{itk} + \phi_{0}t + \phi_{1}t w_i + \delta_0 z_{t} + \delta_1 w_i z_t + \gamma_i + \lambda_t} [+\ldots] \]
\[ g\left(\E[Y_{it}]\right) = g(\mu_{it}) = \alpha_0 + \alpha_1 w_i + \sum_{k=1}^K \beta_k X_{itk} \color{white}{+ \phi_{0}t + \phi_{1}t w_i + \delta_0 z_{t} + \delta_1 w_i z_t + \gamma_i + \lambda_t} [+\ldots] \]
\[ g\left(\E[Y_{it}]\right) = g(\mu_{it}) = \alpha_0 + \alpha_1 w_i + \sum_{k=1}^K \beta_k X_{itk} + \phi_{0}t + \phi_{1}t w_i \color{white}{+ \delta_0 z_{t} + \delta_1 w_i z_t + \gamma_i + \lambda_t} [+\ldots] \]
\[ g\left(\E[Y_{it}]\right) = g(\mu_{it}) = \alpha_0 + \alpha_1 w_i + \sum_{k=1}^K \beta_k X_{itk} + \phi_{0}t + \phi_{1}t w_i + \delta_0 z_{t} + \delta_1 w_i z_t \color{white}{+ \gamma_i + \lambda_t} [+\ldots] \]
\[ g\left(\E[Y_{it}]\right) = g(\mu_{it}) = \alpha_0 + \alpha_1 w_i + \sum_{k=1}^K \beta_k X_{itk} + \phi_{0}t + \phi_{1}t w_i + \delta_0 z_{t} + \delta_1 w_i z_t + \gamma_i + \lambda_t \,[+\ldots] \]
NB: The answer is always “Yes”… 😉
© Gianluca Baio (UCL) | | Bayesian ITS et al | AES 2024 | 27 Jun 2024 | Slides available at https://giabaio.github.io/aes-2024